ServerRun 39447
Creatorchuertas
Programminimalist-boost +Chi2
DatasetLos tres mosqueteros
Task typeMulticlassClassification
Created2y62d ago
Done! Flag_green
24s
1449M
MulticlassClassification
32s
0.055
2s
0.046
1s

Log file

... (lines omitted) ...
iteration:630 feature:16 threshold:41.7398 min-objective:0.999964
iteration:631 feature:17 threshold:-87.6009 min-objective:0.999967
iteration:632 feature:17 threshold:-87.6277 min-objective:0.999963
iteration:633 feature:17 threshold:-87.6688 min-objective:0.999961
iteration:634 feature:17 threshold:-87.6763 min-objective:0.999963
iteration:635 feature:17 threshold:-87.6688 min-objective:0.999964
iteration:636 feature:17 threshold:-87.6763 min-objective:0.999965
iteration:637 feature:17 threshold:-87.6908 min-objective:0.999965
iteration:638 feature:17 threshold:-87.7029 min-objective:0.999958
iteration:639 feature:17 threshold:-87.693 min-objective:0.999962
iteration:640 feature:17 threshold:-87.7029 min-objective:0.999966
iteration:641 feature:17 threshold:-87.7412 min-objective:0.999967
iteration:642 feature:17 threshold:-87.7516 min-objective:0.99995
iteration:643 feature:17 threshold:-87.7589 min-objective:0.99995
iteration:644 feature:17 threshold:-87.7821 min-objective:0.999954
iteration:645 feature:17 threshold:-87.7589 min-objective:0.999964
iteration:646 feature:17 threshold:-87.7516 min-objective:0.999959
iteration:647 feature:17 threshold:-87.7412 min-objective:0.999954
iteration:648 feature:17 threshold:-87.7516 min-objective:0.999957
iteration:649 feature:17 threshold:-87.7412 min-objective:0.999961
iteration:650 feature:16 threshold:41.9859 min-objective:0.999959
iteration:651 feature:16 threshold:41.9935 min-objective:0.999954
iteration:652 feature:16 threshold:41.9971 min-objective:0.999936
iteration:653 feature:16 threshold:41.9935 min-objective:0.999943
iteration:654 feature:16 threshold:41.9971 min-objective:0.999949
iteration:655 feature:16 threshold:42.003 min-objective:0.999948
iteration:656 feature:16 threshold:41.9971 min-objective:0.999956
iteration:657 feature:16 threshold:41.9935 min-objective:0.999955
iteration:658 feature:17 threshold:-87.7516 min-objective:0.999958
iteration:659 feature:17 threshold:-87.744 min-objective:0.999962
iteration:660 feature:16 threshold:41.9971 min-objective:0.999961
iteration:661 feature:16 threshold:42.003 min-objective:0.999962
iteration:662 feature:17 threshold:-87.7516 min-objective:0.999966
iteration:663 feature:16 threshold:41.8686 min-objective:0.999965
iteration:664 feature:16 threshold:41.8937 min-objective:0.999957
iteration:665 feature:16 threshold:41.8686 min-objective:0.999958
iteration:666 feature:16 threshold:41.8598 min-objective:0.999959
iteration:667 feature:16 threshold:41.7741 min-objective:0.999957
iteration:668 feature:16 threshold:41.7723 min-objective:0.999969
iteration:669 feature:16 threshold:41.7456 min-objective:0.99997
iteration:670 feature:16 threshold:41.7398 min-objective:0.999971
iteration:671 feature:21 threshold:-2.5 min-objective:0.999973
iteration:672 feature:22 threshold:54.25 min-objective:0.999949
iteration:673 feature:21 threshold:-2.5 min-objective:0.999972
iteration:674 feature:17 threshold:-87.7589 min-objective:0.999974
iteration:675 feature:17 threshold:-87.7543 min-objective:0.999968
iteration:676 feature:17 threshold:-87.744 min-objective:0.999966
iteration:677 feature:17 threshold:-87.7516 min-objective:0.999969
iteration:678 feature:17 threshold:-87.744 min-objective:0.999971
iteration:679 feature:16 threshold:41.9214 min-objective:0.999969
iteration:680 feature:16 threshold:41.8221 min-objective:0.999964
iteration:681 feature:16 threshold:41.8449 min-objective:0.999963
iteration:682 feature:16 threshold:41.8686 min-objective:0.999962
iteration:683 feature:16 threshold:41.8937 min-objective:0.99996
iteration:684 feature:16 threshold:41.8686 min-objective:0.999961
iteration:685 feature:16 threshold:41.8937 min-objective:0.999962
iteration:686 feature:16 threshold:41.9534 min-objective:0.999962
iteration:687 feature:16 threshold:41.9859 min-objective:0.999964
iteration:688 feature:17 threshold:-87.9108 min-objective:0.999971
iteration:689 feature:7 threshold:-1.79769e+308 min-objective:0.999974
iteration:690 feature:18 threshold:81.75 min-objective:0.999974
iteration:691 feature:21 threshold:17 min-objective:0.999971
iteration:692 feature:21 threshold:11.5 min-objective:0.999959
iteration:693 feature:28 threshold:0.505 min-objective:0.999969
iteration:694 feature:30 threshold:29.8125 min-objective:0.999973
iteration:695 feature:23 threshold:74.5 min-objective:0.99996
iteration:696 feature:32 threshold:12.75 min-objective:0.999958
iteration:697 feature:19 threshold:72.75 min-objective:0.999964
iteration:698 feature:12 threshold:-1.79769e+308 min-objective:0.999974
iteration:699 feature:8 threshold:-1.79769e+308 min-objective:0.999975
iteration:700 feature:9 threshold:-1.79769e+308 min-objective:0.999975
iteration:701 feature:5 threshold:-1.79769e+308 min-objective:0.999975
iteration:702 feature:4 threshold:-1.79769e+308 min-objective:0.999976
iteration:703 feature:16 threshold:41.9935 min-objective:0.999976
iteration:704 feature:16 threshold:41.9971 min-objective:0.999961
iteration:705 feature:16 threshold:41.9935 min-objective:0.999965
iteration:706 feature:16 threshold:41.9971 min-objective:0.999969
iteration:707 feature:16 threshold:41.9935 min-objective:0.999972
iteration:708 feature:16 threshold:41.9971 min-objective:0.999975
iteration:709 feature:16 threshold:42.003 min-objective:0.999973
iteration:710 feature:26 threshold:4.44 min-objective:0.999976
iteration:711 feature:16 threshold:42.011 min-objective:0.999977
iteration:712 feature:30 threshold:30.0975 min-objective:0.999977
iteration:713 feature:30 threshold:30.135 min-objective:0.99997
iteration:714 feature:24 threshold:11 min-objective:0.99996
iteration:715 feature:29 threshold:29.4425 min-objective:0.999967
iteration:716 feature:25 threshold:5.5 min-objective:0.999966
iteration:717 feature:24 threshold:12.5 min-objective:0.999975
iteration:718 feature:31 threshold:16.75 min-objective:0.999976
iteration:719 feature:32 threshold:5.725 min-objective:0.999968
iteration:720 feature:10 threshold:-1.79769e+308 min-objective:0.999977
iteration:721 feature:11 threshold:-1.79769e+308 min-objective:0.999977
iteration:722 feature:12 threshold:-1.79769e+308 min-objective:0.999977
iteration:723 feature:6 threshold:-1.79769e+308 min-objective:0.999978
iteration:724 feature:7 threshold:-1.79769e+308 min-objective:0.999978
iteration:725 feature:8 threshold:-1.79769e+308 min-objective:0.999978
iteration:726 feature:9 threshold:-1.79769e+308 min-objective:0.999979
iteration:727 feature:5 threshold:-1.79769e+308 min-objective:0.999979
iteration:728 feature:24 threshold:12.5 min-objective:0.999979
iteration:729 feature:24 threshold:0.75 min-objective:0.999979
iteration:730 feature:4 threshold:-1.79769e+308 min-objective:0.99998
iteration:731 feature:24 threshold:7.25 min-objective:0.99998
iteration:732 feature:18 threshold:74.25 min-objective:0.999979
iteration:733 feature:24 threshold:12.5 min-objective:0.999969
iteration:734 feature:18 threshold:84.25 min-objective:0.999978
iteration:735 feature:26 threshold:4.44 min-objective:0.99998
iteration:736 feature:10 threshold:-1.79769e+308 min-objective:0.99998
iteration:737 feature:11 threshold:-1.79769e+308 min-objective:0.99998
iteration:738 feature:12 threshold:-1.79769e+308 min-objective:0.99998
iteration:739 feature:27 threshold:17.405 min-objective:0.99998
iteration:740 feature:6 threshold:-1.79769e+308 min-objective:0.999981
iteration:741 feature:25 threshold:12.25 min-objective:0.999981
iteration:742 feature:24 threshold:0.75 min-objective:0.999981
iteration:743 feature:1 threshold:2011.79 min-objective:0.999981
iteration:744 feature:3 threshold:-1.79769e+308 min-objective:0.999979
iteration:745 feature:17 threshold:-87.7516 min-objective:0.999981
iteration:746 feature:16 threshold:41.8686 min-objective:0.999959
iteration:747 feature:16 threshold:41.8937 min-objective:0.999965
iteration:748 feature:16 threshold:41.8686 min-objective:0.999966
iteration:749 feature:16 threshold:41.8598 min-objective:0.999966
iteration:750 feature:16 threshold:41.8221 min-objective:0.999966
iteration:751 feature:16 threshold:41.801 min-objective:0.999965
iteration:752 feature:16 threshold:41.7741 min-objective:0.99997
iteration:753 feature:16 threshold:41.7723 min-objective:0.999973
iteration:754 feature:16 threshold:41.7456 min-objective:0.999974
iteration:755 feature:16 threshold:41.6976 min-objective:0.999975
iteration:756 feature:16 threshold:41.7112 min-objective:0.999975
iteration:757 feature:16 threshold:41.7398 min-objective:0.99997
iteration:758 feature:17 threshold:-87.7589 min-objective:0.999976
iteration:759 feature:17 threshold:-87.7516 min-objective:0.999971
iteration:760 feature:17 threshold:-87.7412 min-objective:0.999971
iteration:761 feature:17 threshold:-87.7543 min-objective:0.999973
iteration:762 feature:16 threshold:41.8221 min-objective:0.999974
iteration:763 feature:16 threshold:41.8449 min-objective:0.999969
iteration:764 feature:16 threshold:41.8686 min-objective:0.99997
iteration:765 feature:16 threshold:41.8937 min-objective:0.999967
iteration:766 feature:17 threshold:-87.7589 min-objective:0.999968
iteration:767 feature:17 threshold:-87.7516 min-objective:0.999978
iteration:768 feature:16 threshold:41.8686 min-objective:0.999973
iteration:769 feature:16 threshold:41.8937 min-objective:0.999969
iteration:770 feature:16 threshold:41.8686 min-objective:0.99997
iteration:771 feature:16 threshold:41.8937 min-objective:0.999971
iteration:772 feature:17 threshold:-87.744 min-objective:0.99997
iteration:773 feature:17 threshold:-87.7034 min-objective:0.999975
iteration:774 feature:17 threshold:-87.693 min-objective:0.999967
iteration:775 feature:17 threshold:-87.7029 min-objective:0.99997
iteration:776 feature:17 threshold:-87.693 min-objective:0.999973
iteration:777 feature:17 threshold:-87.6763 min-objective:0.999971
iteration:778 feature:17 threshold:-87.6688 min-objective:0.999965
iteration:779 feature:17 threshold:-87.6763 min-objective:0.999966
iteration:780 feature:17 threshold:-87.6688 min-objective:0.999967
iteration:781 feature:17 threshold:-87.6763 min-objective:0.999968
iteration:782 feature:17 threshold:-87.6688 min-objective:0.999968
iteration:783 feature:17 threshold:-87.6664 min-objective:0.999969
iteration:784 feature:17 threshold:-87.6455 min-objective:0.999969
iteration:785 feature:17 threshold:-87.6215 min-objective:0.99997
iteration:786 feature:17 threshold:-87.6027 min-objective:0.999972
iteration:787 feature:17 threshold:-87.6136 min-objective:0.999974
iteration:788 feature:16 threshold:41.7741 min-objective:0.999974
iteration:789 feature:16 threshold:41.8598 min-objective:0.999972
iteration:790 feature:16 threshold:41.8686 min-objective:0.999971
iteration:791 feature:16 threshold:41.8937 min-objective:0.999971
iteration:792 feature:16 threshold:41.8686 min-objective:0.999972
iteration:793 feature:17 threshold:-87.7516 min-objective:0.999973
iteration:794 feature:17 threshold:-87.7258 min-objective:0.999976
iteration:795 feature:16 threshold:41.9214 min-objective:0.999976
iteration:796 feature:16 threshold:41.9534 min-objective:0.999975
iteration:797 feature:16 threshold:41.9634 min-objective:0.999967
iteration:798 feature:16 threshold:41.9534 min-objective:0.999974
iteration:799 feature:16 threshold:41.9508 min-objective:0.999978
iteration:800 feature:16 threshold:41.9054 min-objective:0.999978
iteration:801 feature:16 threshold:41.8937 min-objective:0.999973
iteration:802 feature:16 threshold:41.8686 min-objective:0.999973
iteration:803 feature:16 threshold:41.8676 min-objective:0.999974
iteration:804 feature:16 threshold:41.8221 min-objective:0.999973
iteration:805 feature:16 threshold:41.8025 min-objective:0.999971
iteration:806 feature:16 threshold:41.8221 min-objective:0.999972
iteration:807 feature:16 threshold:41.8025 min-objective:0.999974
iteration:808 feature:16 threshold:41.8221 min-objective:0.999976
iteration:809 feature:16 threshold:41.8449 min-objective:0.999975
iteration:810 feature:16 threshold:41.8686 min-objective:0.999977
iteration:811 feature:16 threshold:41.8937 min-objective:0.999974
iteration:812 feature:16 threshold:41.8686 min-objective:0.999975
iteration:813 feature:16 threshold:41.8937 min-objective:0.999976
iteration:814 feature:16 threshold:41.8686 min-objective:0.999976
iteration:815 feature:16 threshold:41.8937 min-objective:0.999977
iteration:816 feature:1 threshold:2009.68 min-objective:0.999977
iteration:817 feature:30 threshold:29.8125 min-objective:0.999976
iteration:818 feature:29 threshold:29.115 min-objective:0.999966
iteration:819 feature:30 threshold:29.8125 min-objective:0.999977
iteration:820 feature:23 threshold:75.5 min-objective:0.999977
iteration:821 feature:30 threshold:29.8125 min-objective:0.999978
iteration:822 feature:22 threshold:72.25 min-objective:0.999979
iteration:823 feature:1 threshold:2011.66 min-objective:0.999979
iteration:824 feature:32 threshold:12.75 min-objective:0.999977
iteration:825 feature:25 threshold:5.5 min-objective:0.999977
iteration:826 feature:16 threshold:41.9534 min-objective:0.999978
iteration:827 feature:16 threshold:41.9634 min-objective:0.999977
iteration:828 feature:16 threshold:41.958 min-objective:0.999976
iteration:829 feature:16 threshold:41.9634 min-objective:0.999977
iteration:830 feature:16 threshold:41.958 min-objective:0.999977
iteration:831 feature:16 threshold:41.9508 min-objective:0.999977
iteration:832 feature:16 threshold:41.946 min-objective:0.999978
iteration:833 feature:18 threshold:95 min-objective:0.999979
iteration:834 feature:32 threshold:12.75 min-objective:0.999979
iteration:835 feature:16 threshold:41.9634 min-objective:0.99998
iteration:836 feature:16 threshold:41.958 min-objective:0.999978
iteration:837 feature:16 threshold:41.9508 min-objective:0.999978
iteration:838 feature:31 threshold:27.25 min-objective:0.999979
iteration:839 feature:31 threshold:23.75 min-objective:0.999971
iteration:840 feature:30 threshold:29.8125 min-objective:0.999966
iteration:841 feature:28 threshold:0.505 min-objective:0.999975
iteration:842 feature:28 threshold:0.095 min-objective:0.999971
iteration:843 feature:31 threshold:27.25 min-objective:0.999977
iteration:844 feature:18 threshold:82.75 min-objective:0.999976
iteration:845 feature:31 threshold:16.75 min-objective:0.999974
iteration:846 feature:7 threshold:-1.79769e+308 min-objective:0.999981
iteration:847 feature:5 threshold:-1.79769e+308 min-objective:0.999982
iteration:848 feature:8 threshold:-1.79769e+308 min-objective:0.999982
iteration:849 feature:18 threshold:91.25 min-objective:0.999982
iteration:850 feature:32 threshold:12.75 min-objective:0.999977
iteration:851 feature:28 threshold:0.505 min-objective:0.99998
iteration:852 feature:28 threshold:0.095 min-objective:0.99998
iteration:853 feature:32 threshold:11.125 min-objective:0.999982
iteration:854 feature:4 threshold:-1.79769e+308 min-objective:0.999982
iteration:855 feature:10 threshold:-1.79769e+308 min-objective:0.999982
iteration:856 feature:12 threshold:-1.79769e+308 min-objective:0.999982
iteration:857 feature:21 threshold:11.5 min-objective:0.999983
iteration:858 feature:24 threshold:12.5 min-objective:0.999982
iteration:859 feature:11 threshold:-1.79769e+308 min-objective:0.999983
iteration:860 feature:26 threshold:4.44 min-objective:0.999983
iteration:861 feature:7 threshold:-1.79769e+308 min-objective:0.999983
iteration:862 feature:32 threshold:12.75 min-objective:0.999984
iteration:863 feature:28 threshold:0.2875 min-objective:0.999978
iteration:864 feature:1 threshold:2007.71 min-objective:0.999978
iteration:865 feature:9 threshold:-1.79769e+308 min-objective:0.999984
iteration:866 feature:5 threshold:-1.79769e+308 min-objective:0.999984
iteration:867 feature:8 threshold:-1.79769e+308 min-objective:0.999984
iteration:868 feature:6 threshold:-1.79769e+308 min-objective:0.999984
iteration:869 feature:4 threshold:-1.79769e+308 min-objective:0.999984
iteration:870 feature:10 threshold:-1.79769e+308 min-objective:0.999984
iteration:871 feature:12 threshold:-1.79769e+308 min-objective:0.999984
iteration:872 feature:16 threshold:41.9534 min-objective:0.999984
iteration:873 feature:17 threshold:-87.7276 min-objective:0.99998
iteration:874 feature:17 threshold:-87.744 min-objective:0.999981
iteration:875 feature:17 threshold:-87.7516 min-objective:0.999978
iteration:876 feature:17 threshold:-87.744 min-objective:0.99998
iteration:877 feature:16 threshold:41.9634 min-objective:0.999978
iteration:878 feature:16 threshold:41.958 min-objective:0.999978
iteration:879 feature:16 threshold:41.9634 min-objective:0.999979
iteration:880 feature:16 threshold:41.958 min-objective:0.999979
iteration:881 feature:16 threshold:41.9508 min-objective:0.999979
iteration:882 feature:16 threshold:41.946 min-objective:0.99998
iteration:883 feature:16 threshold:41.9214 min-objective:0.99998
iteration:884 feature:16 threshold:41.9054 min-objective:0.999978
iteration:885 feature:16 threshold:41.8676 min-objective:0.999977
iteration:886 feature:16 threshold:41.8221 min-objective:0.999977
iteration:887 feature:16 threshold:41.8 min-objective:0.999976
iteration:888 feature:16 threshold:41.7741 min-objective:0.999979
iteration:889 feature:16 threshold:41.77 min-objective:0.999975
iteration:890 feature:22 threshold:60.25 min-objective:0.999977
iteration:891 feature:28 threshold:0.2375 min-objective:0.99998
iteration:892 feature:28 threshold:0.2875 min-objective:0.99998
iteration:893 feature:28 threshold:0.2375 min-objective:0.999981
iteration:894 feature:28 threshold:0.2875 min-objective:0.999981
iteration:895 feature:28 threshold:0.2375 min-objective:0.999982
iteration:896 feature:28 threshold:0.2875 min-objective:0.999982
iteration:897 feature:28 threshold:0.2375 min-objective:0.999982
iteration:898 feature:28 threshold:0.2875 min-objective:0.999983
iteration:899 feature:31 threshold:23.75 min-objective:0.999982
iteration:900 feature:30 threshold:29.8125 min-objective:0.999982
iteration:901 feature:29 threshold:29.115 min-objective:0.999973
iteration:902 feature:30 threshold:29.8125 min-objective:0.999982
iteration:903 feature:22 threshold:71.25 min-objective:0.999979
iteration:904 feature:29 threshold:29.4 min-objective:0.999982
iteration:905 feature:26 threshold:4.525 min-objective:0.999984
iteration:906 feature:27 threshold:19.46 min-objective:0.999978
iteration:907 feature:26 threshold:4.525 min-objective:0.999979
iteration:908 feature:27 threshold:19.46 min-objective:0.99998
iteration:909 feature:26 threshold:4.525 min-objective:0.999981
iteration:910 feature:27 threshold:19.46 min-objective:0.999982
iteration:911 feature:26 threshold:4.525 min-objective:0.999983
iteration:912 feature:27 threshold:19.46 min-objective:0.999983
iteration:913 feature:26 threshold:4.525 min-objective:0.999984
iteration:914 feature:27 threshold:19.46 min-objective:0.999984
iteration:915 feature:24 threshold:0.75 min-objective:0.999984
iteration:916 feature:11 threshold:-1.79769e+308 min-objective:0.999985
iteration:917 feature:26 threshold:4.44 min-objective:0.999985
iteration:918 feature:27 threshold:17.405 min-objective:0.999985
iteration:919 feature:26 threshold:4.525 min-objective:0.999985
iteration:920 feature:7 threshold:-1.79769e+308 min-objective:0.999985
iteration:921 feature:9 threshold:-1.79769e+308 min-objective:0.999985
iteration:922 feature:5 threshold:-1.79769e+308 min-objective:0.999985
iteration:923 feature:27 threshold:19.46 min-objective:0.999985
iteration:924 feature:30 threshold:30.0525 min-objective:0.999985
iteration:925 feature:27 threshold:17.925 min-objective:0.999982
iteration:926 feature:24 threshold:11 min-objective:0.999979
iteration:927 feature:30 threshold:30.135 min-objective:0.999975
iteration:928 feature:21 threshold:-11 min-objective:0.999976
iteration:929 feature:30 threshold:30.135 min-objective:0.999977
iteration:930 feature:29 threshold:29.57 min-objective:0.999979
iteration:931 feature:29 threshold:29.4425 min-objective:0.99998
iteration:932 feature:24 threshold:12.5 min-objective:0.99998
iteration:933 feature:8 threshold:-1.79769e+308 min-objective:0.999985
iteration:934 feature:4 threshold:-1.79769e+308 min-objective:0.999986
iteration:935 feature:10 threshold:-1.79769e+308 min-objective:0.999986
iteration:936 feature:12 threshold:-1.79769e+308 min-objective:0.999986
iteration:937 feature:6 threshold:-1.79769e+308 min-objective:0.999986
iteration:938 feature:11 threshold:-1.79769e+308 min-objective:0.999986
iteration:939 feature:27 threshold:17.405 min-objective:0.999986
iteration:940 feature:24 threshold:0.75 min-objective:0.999986
iteration:941 feature:26 threshold:4.44 min-objective:0.999986
iteration:942 feature:7 threshold:-1.79769e+308 min-objective:0.999986
iteration:943 feature:24 threshold:12.5 min-objective:0.999987
iteration:944 feature:21 threshold:11.5 min-objective:0.999987
iteration:945 feature:1 threshold:2007.64 min-objective:0.999986
iteration:946 feature:17 threshold:-87.5316 min-objective:0.999981
iteration:947 feature:17 threshold:-87.5334 min-objective:0.999968
iteration:948 feature:17 threshold:-87.5316 min-objective:0.999971
iteration:949 feature:17 threshold:-87.5334 min-objective:0.999973
iteration:950 feature:17 threshold:-87.5316 min-objective:0.999975
iteration:951 feature:17 threshold:-87.5334 min-objective:0.999977
iteration:952 feature:17 threshold:-87.5316 min-objective:0.999979
iteration:953 feature:17 threshold:-87.5334 min-objective:0.99998
iteration:954 feature:17 threshold:-87.5409 min-objective:0.99998
iteration:955 feature:17 threshold:-87.5574 min-objective:0.999972
iteration:956 feature:17 threshold:-87.5409 min-objective:0.999975
iteration:957 feature:17 threshold:-87.5574 min-objective:0.999978
iteration:958 feature:14 threshold:-1.79769e+308 min-objective:0.999975
iteration:959 feature:17 threshold:-87.5409 min-objective:0.99998
iteration:960 feature:17 threshold:-87.5574 min-objective:0.99997
iteration:961 feature:17 threshold:-87.5409 min-objective:0.999973
iteration:962 feature:17 threshold:-87.5574 min-objective:0.999976
iteration:963 feature:17 threshold:-87.5409 min-objective:0.999978
iteration:964 feature:17 threshold:-87.5574 min-objective:0.999981
iteration:965 feature:17 threshold:-87.5841 min-objective:0.999982
iteration:966 feature:17 threshold:-87.586 min-objective:0.999985
iteration:967 feature:17 threshold:-87.6027 min-objective:0.99998
iteration:968 feature:16 threshold:41.7223 min-objective:0.999973
iteration:969 feature:16 threshold:41.7456 min-objective:0.999974
iteration:970 feature:17 threshold:-87.6215 min-objective:0.999972
iteration:971 feature:17 threshold:-87.6455 min-objective:0.999977
iteration:972 feature:17 threshold:-87.6763 min-objective:0.999973
iteration:973 feature:17 threshold:-87.6688 min-objective:0.999971
iteration:974 feature:17 threshold:-87.6763 min-objective:0.999972
iteration:975 feature:17 threshold:-87.6688 min-objective:0.999972
iteration:976 feature:17 threshold:-87.6763 min-objective:0.999973
iteration:977 feature:17 threshold:-87.6688 min-objective:0.999974
iteration:978 feature:17 threshold:-87.6664 min-objective:0.999974
iteration:979 feature:17 threshold:-87.6688 min-objective:0.999977
iteration:980 feature:17 threshold:-87.6763 min-objective:0.999975
iteration:981 feature:17 threshold:-87.6688 min-objective:0.999975
iteration:982 feature:17 threshold:-87.6763 min-objective:0.999976
iteration:983 feature:17 threshold:-87.6688 min-objective:0.999977
iteration:984 feature:17 threshold:-87.6763 min-objective:0.999977
iteration:985 feature:17 threshold:-87.6688 min-objective:0.999978
iteration:986 feature:17 threshold:-87.6763 min-objective:0.999978
iteration:987 feature:17 threshold:-87.6688 min-objective:0.999979
iteration:988 feature:17 threshold:-87.6667 min-objective:0.999979
iteration:989 feature:17 threshold:-87.6688 min-objective:0.99998
iteration:990 feature:17 threshold:-87.6763 min-objective:0.99998
iteration:991 feature:17 threshold:-87.693 min-objective:0.99998
iteration:992 feature:17 threshold:-87.7034 min-objective:0.999976
iteration:993 feature:17 threshold:-87.693 min-objective:0.99998
iteration:994 feature:17 threshold:-87.7029 min-objective:0.999981
iteration:995 feature:17 threshold:-87.7258 min-objective:0.99998
iteration:996 feature:17 threshold:-87.7516 min-objective:0.999984
iteration:997 feature:17 threshold:-87.7589 min-objective:0.999981
iteration:998 feature:17 threshold:-87.7736 min-objective:0.999979
iteration:999 feature:17 threshold:-87.7589 min-objective:0.999981
=== END program1: ./run learn ../dataset2/train --- OK [32s]

===== MAIN: predict/evaluate on train data =====
=== START program3: ./run stripLabels ../dataset2/train ../program0/evalTrain.in
=== END program3: ./run stripLabels ../dataset2/train ../program0/evalTrain.in --- OK [0s]
=== START program1: ./run predict ../program0/evalTrain.in ../program0/evalTrain.out
Using Java: 1.7.0-ea
Converting Test Data...
5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 
Test data generated in: 1201ms
=== END program1: ./run predict ../program0/evalTrain.in ../program0/evalTrain.out --- OK [2s]
=== START program4: ./run evaluate ../dataset2/train ../program0/evalTrain.out
=== END program4: ./run evaluate ../dataset2/train ../program0/evalTrain.out --- OK [0s]

===== MAIN: predict/evaluate on test data =====
=== START program3: ./run stripLabels ../dataset2/test ../program0/evalTest.in
=== END program3: ./run stripLabels ../dataset2/test ../program0/evalTest.in --- OK [1s]
=== START program1: ./run predict ../program0/evalTest.in ../program0/evalTest.out
Using Java: 1.7.0-ea
Converting Test Data...
5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 
Test data generated in: 732ms
=== END program1: ./run predict ../program0/evalTest.in ../program0/evalTest.out --- OK [1s]
=== START program4: ./run evaluate ../dataset2/test ../program0/evalTest.out
=== END program4: ./run evaluate ../dataset2/test ../program0/evalTest.out --- OK [0s]


real	0m49.056s
user	0m40.659s
sys	0m2.600s

Run specification Arrow_right
Results Arrow_right


Comments:


Must be logged in to post comments.