ServerRun 14742
Creatorinternal
ProgramMyMediaLite-matrix-factorization-k-5
Datasetmovielens100k
Task typeCollaborativeFiltering
Created6y40d ago
DownloadLogin required!
Done! Flag_green
20s
417M
CollaborativeFiltering
0.809
0.638
0.960
0.756

Log file

Nothing to construct.
===== MAIN: learn based on training data =====
=== START program1: ./run learn ../dataset2/train
loading_time 0.48
ratings range: [0, 5]
training data: 943 users, 1680 items, 90570 ratings, sparsity 94.28306
MatrixFactorization num_factors=5 regularization=0.05 learn_rate=0.005 num_iter=125 init_mean=0 init_stdev=0.1 training_time 00:00:15.9754220 
memory 2
Save model to model.txt
=== END program1: ./run learn ../dataset2/train --- OK [18s]

===== MAIN: predict/evaluate on train data =====
=== START program3: ./run stripLabels ../dataset2/train ../program0/evalTrain.in
=== END program3: ./run stripLabels ../dataset2/train ../program0/evalTrain.in --- OK [2s]
=== START program1: ./run predict ../program0/evalTrain.in ../program0/evalTrain.out
loading_time 0.79
ratings range: [0, 5]
training data: 943 users, 1680 items, 90570 ratings, sparsity 94.28306
test data:     943 users, 1680 items, 90570 ratings, sparsity 94.28306
Load model from model.txt
Set num_factors to 5
MatrixFactorization num_factors=5 regularization=0.015 learn_rate=0.01 num_iter=30 init_mean=0 init_stdev=0.1 RMSE 3.5946 MAE 3.52909 NMAE 0.70582 testing_time 00:00:00.0190640
predicting_time 00:00:00.4472430
memory 3
=== END program1: ./run predict ../program0/evalTrain.in ../program0/evalTrain.out --- OK [2s]
=== START program4: ./run evaluate ../dataset2/train ../program0/evalTrain.out
=== END program4: ./run evaluate ../dataset2/train ../program0/evalTrain.out --- OK [1s]

===== MAIN: predict/evaluate on test data =====
=== START program3: ./run stripLabels ../dataset2/test ../program0/evalTest.in
=== END program3: ./run stripLabels ../dataset2/test ../program0/evalTest.in --- OK [1s]
=== START program1: ./run predict ../program0/evalTest.in ../program0/evalTest.out
loading_time 0.48
ratings range: [0, 5]
training data: 943 users, 1680 items, 90570 ratings, sparsity 94.28306
test data:     943 users, 1129 items, 9430 ratings, sparsity 99.11426
Load model from model.txt
Set num_factors to 5
MatrixFactorization num_factors=5 regularization=0.015 learn_rate=0.01 num_iter=30 init_mean=0 init_stdev=0.1 RMSE 3.64752 MAE 3.59126 NMAE 0.71825 testing_time 00:00:00.0042230
predicting_time 00:00:00.0183140
memory 2
=== END program1: ./run predict ../program0/evalTest.in ../program0/evalTest.out --- OK [1s]
=== START program4: ./run evaluate ../dataset2/test ../program0/evalTest.out
=== END program4: ./run evaluate ../dataset2/test ../program0/evalTest.out --- OK [1s]


real	0m31.303s
user	0m18.129s
sys	0m1.308s

Run specification Arrow_right
Results Arrow_right


Comments:


Must be logged in to post comments.